Biblia

Weights And Measures

Weights And Measures

Weights and Measures

WEIGHTS: mishkol from “shekel” (the weight in commonest use); eben, a “stone”, anciently used as a weight; peles, “scales”. Of all Jewish weights the shekel was the most accurate, as a half shekel was ordered by God to be paid by every Israelite as a ransom. From the period of the Exodus there were two shekels, one for ordinary business (Exo 38:29; Jos 7:21; 2Ki 7:1; Amo 8:5), the other, which was larger, for religious uses (Exo 30:13; Lev 5:15; Num 3:47). The silver in the half-shekel was 1 shilling, 3 1/2 pence; it contained 20 gerahs, literally, beans, a name of a weight, as our grain from grain.

The Attic tetradrachma, or Greek stater, was equivalent to the shekel. The didrachma of the Septuagint at Alexandria was equivalent to the Attic tetradrachma. The shekel was about 220 grains weight. In 2Sa 14:26 “shekel after the king’s weight” refers to the perfect standard kept by David. Michaelis makes five to three the proportion of the holy shekel to the commercial shekel; for in Eze 45:12 the maneh contains 60 of the holy shekels; in 1Ki 10:17; 2Ch 9:16, each maneh contained 100 commercial shekels, i.e. 100 to (60 or five to three. After the captivity the holy shekel alone was used. The half shekel (Exo 38:26; Mat 17:24) was the beka (meaning “division”): the “quarter shekel”, reba; the “20th of the shekel”, gerah.

Hussey calculates the shekel at half ounce avoirdupois, and the maneh half pound, 14 oz.; 60 holy shekels were in the maneh, 3,000 in the silver talent, so 50 maneh in the talent: 660,000 grains, or 94 lbs. 5 oz. The gold talent is made by Smith’s Bible Dictionary 100 manehs, double the silver talent (50 manehs); by the Imperial Bible Dictionary identical with it. (See SHEKEL; MONEY; TALENT.) A gold maneh contained 100 shekels of gold. The Hebrew talents of silver and copper were exchangeable in the proportion of about one to 80; 50 shekels of silver are thought equal to a talent of copper. “Talent” means a circle or aggregate sum. One talent of gold corresponded to 24 talents of silver.

MEASURES: Those of length are derived from the human body. The Hebrew used the forearm as the “cubit,” but not the “foot.” The Egyptian terms hin, ‘ephah, and ‘ammah (cubit) favor the view that the Hebrew derived their measures from Egypt. The similarity of the Hebrew to the Athenian scales for liquids makes it likely that both came from the one origin, namely, Egypt. Piazzi Smyth observes the sacred cubit of the Jews, 25 inches (to which Sir Isaac Newton’s calculation closely approximates), is represented in the great pyramid, 2500 B.C.; in contrast to the ordinary standard cubits, from 18 to 21 inches, the Egyptian one which Israel had to use in Egypt. The 25-inch cubit measure is better than any other in its superior earth-axis commensurability. The inch is the real unit of British linear measure: 25 such inches (increased on the present parliamentary inch by one thousandth) was Israel’s sacred cubit; 1.00099 of an English inch makes one pyramid inch; the earlier English inch was still closer to the pyramid inch.

Smyth remarks that no pagan device of idolatry, not even the sun and moon, is pourtrayed in the great pyramid, though there are such hieroglyphics in two older pyramids. He says the British grain measure “quarter” is just one fourth of the coffer in the king’s chamber, which is the same capacity as the Saxon chaldron or four quarters. The small passage of the pyramid represents a unit day; the grand gallery, seven unit days or a week. The grand gallery is seven times as high as one of the small and similarly inclined passages equalling 350 inches, i.e. seven times 50 inches. The names Shofo and Noushofo (Cheops and Chephren of Herodotus) are marked in the chambers of construction by the stonemasons at the quarry. The Egyptian dislike to those two kings was not because of forced labour, for other pyramids were built so by native princes, but because they overthrew the idolatrous temples.

The year is marked by the entrance step into the great gallery, 90.5 inches, going 366 times into the circumference of the pyramid. The seven overlappings of the courses of polished stones on the eastern and the western sides of the gallery represent two weeks of months of 26 days each so there are 26 holes in the western ramp; on the other ramp 28, in the antechamber two day holes over and above the 26. Four grooves represent four years, three of them hollow and one full, i.e. three years in which only one day is to be added to the 14 x 26 for the year; the fourth full from W. to E., i.e. two days to be added on leap year, 366 days. The full groove not equal in breadth to the hollow one implies that the true length of the year is not quite 365 1/4 days. Job (Job 38:6) speaks of the earth’s “sockets” with imagery from the pyramid, which was built by careful measurement on a prepared platform of rock.

French savants A.D. 1800 described sockets in the leveled rock fitted to receive the four corner stones. The fifth corner stone was the topstone completing the whole; the morning stars singing together at the topstone being put to creation answers to the shoutings, Grace unto it, at the topstone being put to redemption (Job 38:7; Zec 4:7); Eph 2:19, “the chief corner stone in which all the building fitly framed together groweth into an holy tern. pie.” The topstone was “disallowed by the builders” as “a stone of stumbling and a rock of offense” to them; for the pyramids previously constructed were terrace topped, not topped with the finished pointed cornerstone.

Pyramid is derived from peram “lofty” (Ewald), from puros “wheat” (P. Smyth). The mean density of the earth (5,672) is introduced into the capacity and weight measures of the pyramid (Isa 40:12). The Egyptians disliked the number five, the characteristic of the great pyramid, which has five sides, five angles, five corner stones, and the five sided coffer. Israel’s predilection for it appears in their marching five in a rank (Hebrew for “harnessed”), Exo 13:18; according to Manetho, 250,000, i.e. 5 x 50,000; so the shepherd kings at Avaris are described as 250,000; 50 inches is the grand standard of length in the pyramid, five is the number of books in the Pentateuch, 50 is the number of the Jubilee year, 25 inches (5 x 5) the cubit, an integral fraction of the earth’s axis of rotation, 50 the number of Pentecost. (See NUMBER.)

The cow sacrifice of Israel was an “abomination to the Egyptians”; and the divinely taught builders of the great pyramid were probably of the chosen race, in the line of, though preceding, Abraham and closer to Noah, introducers into Egypt of the pure worship of Jehovah (such as Melchizedek held) after its apostasy to idols, maintaining the animal sacrifices originally ordained by God (Gen 3:21; Gen 4:4; Gen 4:7; Heb 11:4), but rejected in Egypt; forerunners of the hyksos or shepherd kings who from the Canaan quarter made themselves masters of Egypt. The enormous mass of unoccupied masonry would have been useless as a tomb, but necessary if the pyramid was designed to preserve an equal temperature for unexceptionable scientific observations; 100 ft. deep inside the pyramid would prevent a variation of heat beyond 01 degree of Fahrenheit, but the king’s chamber is 180 ft. deep to compensate for the altering of air currents through the passages.

The Hebrew finger, about seven tenths of an inch, was the smaller measure. The palm or handbreadth was four fingers, three or four inches; illustrates the shortness of time (Psa 39:5). The span, the space between the extended extremities of the thumb and little finger, three palms, about seven and a half inches. The old Mosaic or sacred cubit (the length from the elbow to the end of the middle finger, 25 inches) was a handbreadth longer than the civil cubit of the time of the captivity (from the elbow to the wrist, 21 inches): Eze 40:5; Eze 43:13; 2Ch 3:3, “cubits after the first (according to the earlier) measure.” The Mosaic cubit (Thenius in Keil on 1Ki 6:2) was two spans, 20 1/2 Dresden inches, 214,512 Parisian lines long.

Og’s bedstead, nine cubits long (Deu 3:11) “after the cubit of a man,” i.e. according to the ordinary cubit (compare Rev 21:17) as contrasted with any smaller cubit, was of course much longer than the giant himself. In Eze 41:8 (atsilah) Henderson translated for “great” cubits, literally, “to the extremity” of the hand; Fairbairn, “to the joining” between one chamber and another below; Buxtorf, “to the wing” of the house. The measuring reed of Eze 40:5 was six cubits long. Furlong (stadion), one eighth of a Roman mile, or 606 3/4 ft. (Luk 24:13), Luk 24:53 1/2 ft. less than our furlong.

The mile was eight furlongs or 1618 English yards, i.e. 142 yards less than the English statute mile; the milestones still remain in some places. Mat 5:41, “compel,” angareusei, means literally, impress you as a post courier, originally a Persian custom, but adopted by the Romans. Sabbath day’s journey (See SABBATH.) A little way (Gen 35:16, kibrah) is a definite length: Onkelos, an acre; Syriac, a parasang (30 furlongs). The Jews take it to be a mile, which tradition makes the interval between Rachel’s tomb and Ephrath, or Bethlehem (Gen 48:7); Gesenius, a French league. A day’s journey was about 20 to 22 miles (Num 11:31; 1Ki 19:4).

DRY MEASURES. A cab (2Ki 6:25), a sixth of a seah; four sextaries or two quarts. Omer, an Egyptian word, only in Exodus and Leviticus (Exo 16:16; Lev 23:10); the tenth of an ephah; Josephus makes it seven Attic cotylae or three and a half pints (Ant. 3:6, section 6), but its proportion to the bath (Eze 45:11; Josephus, Ant. 8:2, section 9) would make the omer seven and a half pints; issaron or a tenth was its later name; an omer of manna was each Israelite’s daily allowance; one was kept in the holiest place as a memorial (Exo 16:33-34), but had disappeared before Solomon’s reign (1Ki 8:9).

A seah (Gen 18:6), the third of an ephah, and containing six cabs (rabbins), three gallons (Josephus, Ant. 9:4, section 5); the Greek saton (Mat 13:33). ‘ephah, from ‘if to measure, ten omers, equal to the bath (Eze 45:11); Josephus (Ant. 8:2, section 9) makes it nine gallons; the rabbis make it only half. The half homer was called lethek (Hos 3:2). The homer or cor was originally an donkey load; Gesenius, an heap. A measure for liquids or dry goods; ten ephahs (Eze 45:14), i.e. 90 gallons, if Josephus’ (Ant. 8:2, section 9) computation of the bath or ephah as nine gallons is right. The rabbis make it 45 gallons.

LIQUID MEASURES. The log, a cotyle or half pint; related to our lake, a hollow; twelfth of the hin, which was sixth of a bath or 12 pints. The bath was an ephah, the largest Hebrew liquid measure, nine gallons (Josephus), but four and a half (rabbis). The sextary contained nearly a pint, translated “pots” in Mar 7:4-8. The choenix (Rev 6:6) one quart, or else one pint and a half; in scarcity a penny or denarius only bought a choenix, but ordinarily a bushel of wheat. The modius, “bushel,” two gallons, found in every household, therefore preceded by the Greek “the” (Mat 5:15). Metretes, “firkin” (Joh 2:6), nearly nine gallons; answering to the Hebrew bath. The koros or cor, “measure” (Luk 16:7) of grain; bath (Luk 16:6), “measure” of oil. Twelve logs to one hin; six bins to one bath. One cab and four-fifths to one omer. Three omers and one third, one seah. Three seahs to one ephah. Ten ephahs to one homer.

Fuente: Fausset’s Bible Dictionary

Weights And Measures

WEIGHTS AND MEASURES.The specific object for which the Gospels were composed did not call for anything like a full detailed use of metrical data. Within their limited compass there are only incidental allusions to a system, or rather systems, of weights and measures. These are naturally scanty and obscure. The most that can be done with them is to identify them as nearly as possible with equivalents in modern systems, and to ascertain their places in those that were current in the Palestine of NT times. At this last point a difficulty at once emerges, due partly to the absence of regard for accuracy and precision in such matters prevalent at the time and place, and partly to the mixture of standards derived from successive and widely differing populations coming in with successive waves of conquest and invasion. The situation was not unlike that of modern Syria, with its bewildering confusion of coinage and other standards of value, brought in and grafted on the native system by French, German, and English merchants.

It is generally agreed by expert metrologists that the basis and fountainhead of all systems of measurement is to be traced to Babylonia. But in passing into Western countries, the Babylonian system was naturally subjected to as many modifications as it entered regions, and gave rise to quite as many secondary or derivative systems. These, during the course of the interrelations of the peoples using them, mutually affected one another; and the result was a variety of values called by the same name, or by names derived from the same original. On account of this fact, etymological processes of reasoning are in this field of little value, if not altogether valueless and misleading. Moreover, throughout the whole history of metrology there is a tendency noticeable towards the shrinkage or reduction of primitive values, making it essential to distinguish with great care between the values current under the same name in different periods of history. In the attempt to reach the exact facts as far as the 1st cent. a.d. is concerned, it will be best to bear in mind that in Palestine during the OT period three main systems of metrology came into use more or less extensively, the Babylonian, the Egyptian, and the Phnician, and that to these, just before the times of Jesus, the Roman conquest added a fourth as a disturbing element.

I. Weights.The primitive unit of weight was the shekel. This developed into two forms, the heavy and the light (cf. Kennedy in Hasting’s Dictionary of the Bible , art. Weights and Measures). The heavy shekel weighed 252.5 grs., and the light just one-half of that. Perhaps while the shekel was still being used in these forms, a third value was attached to it by the introduction of the Syrian shekel of 320 grs., and a fourth value later, viz. the Phnician of 224.4 grs. In Roman times the denarius was introduced. This was equivalent to the Attic drachm. But Josephus (Ant. iii. viii. 2) represents the Hebrew shekel () as equal to a tetradrachm (4 drs.), and a drachm-denarius was fixed by Nero at 52.62 grs. At least approximately, therefore, for the 1st cent. a.d., three units in the scale of weights may be determined, as follows: the drachm-denarius = 52.5 grs., the light shekel = 105 grs., and the heavy shekel=210 grs. Of the higher units the mina is equated with 100 drs., and the talent with 60 minae, hence the scale:

Dr. Den.Shek.Tetr.Min.Talent.

Drachm-Denar.152.5+grs.

Shek. (light).21105+grs.

Shek. (heavy) Tetradrachm421210+grs.

Mina.100502515250+grs.

Talent.600030001500601315000+grs.

In the Gospels the words (light shekel, Mat 17:24) and * [Note: in Rev 16:21 (cf. also Jos. BJ v. vi. 3) can in the nature of the case be only an approximation. The PEFSt, 1892, 289 f., records the discovery of a large stone weighing 64600 grs. (41900 grammes), used as a heavy talent weight.] (talent, Mat 18:24; Mat 25:15-28) occur, but not as the names of weights; they are the designations of coins (see Money). The only term purely designating a weight is (pound, Joh 12:3; Joh 19:39).* [Note: In this place, according to Hultsch, the is not the same as in Joh 19:39. He understands the term to be the name of a translucent horn vessel with measuring lines on the outside, used by apothecaries in dealing out medicines. Such a measuring instrument was used; but that it served for carrying ointment is improbable, and the identification of the here with Joh 19:39 seems more natural.] This was identified with the mina of the above scale as its approximate equivalent. Its exact weight in the Roman scale of weights is given as 5050 grs., or 11 oz. avoirdupois.

II. Measures

1. Measures of Length.The unit of linear measurement in earlier Biblical times was the cubit (). This was obtained by the adoption of the length of the forearm from the elbow to the tip of the middle finger as the standard. There are evidences that such a standard was early averaged, conventionalized, and made the legal unit among the Israelites, being introduced like other standards of the kind from Baby. Ionia. The cubit did not, however, remain a fixed unit throughout. From Eze 40:5 (cf. Eze 43:13) we learn that two standards of measurement called cubits had come into use, and were employed in the prophets day, and that these differed by one hands breadth. The common cubit was six hand-breadths in length, the sacred cubit, seven. The question of the absolute length of either is, therefore, resolved into the value of the handbreadth. It would be useless to discuss in detail the various processes through which the solution of the problem has been attempted. The results of these processes show a divergence of over nine inches. Conder (Handbook of the Bible) finds the cubit to be 16 in. in length. Petrie (Ency. Brit.9 [Note: designates the particular edition of the work referred] xxiv. 484) finds it to be 25.2. Between these extremes are the following: A. R. S. Kennedy (Hasting’s Dictionary of the Bible , art. Weights and Measures), 17.5 in.; Watson (PEFSt [Note: EFSt Quarterly Statement of the same.] , 1897, 203 ff.), 17.7; Beswick (ib. 1879, 182 ff.), 17.72; Warren (ib. 1899, 229 ff.), 17.75 in.; Smiths DB [Note: Dictionary of the Bible.] , based on Thenius, 19.5 in.; and Petrie (PEFSt [Note: EFSt Quarterly Statement of the same.] , 1892, 31), 22.6. If we set aside the extremes by Conder and Petrie and Smiths DB [Note: Dictionary of the Bible.] , the divergence in the remainder is reduced to a margin not larger than .25 inch. Accordingly, the consensus of the most recent investigation may be safely taken to fix the value of the cubit in inches at between 17.50 and 17.75. Therefore the symbol, 17.5 + may be accepted as the approximate value of the common cubit among the Israelites. Upon this basis the longer cubit of Eze 40:5 was Eze 20:6 in. This result coincides with the Egyptian metrological system, and it appears probable that, being introduced from Egypt as the equivalent of the royal Egyptian measure of the name, the cubit was gradually reduced until in Ezekiels day the shorter form of it had been definitely fixed. This, then, persisted up to NT times, and was identified with the Roman cubitus of a little less than 17.5 in. (cf. Smith, Dict. of Antiq. p. 1227). [Note: In Egypt, too, there was a longer cubit and a shorter, and these two were related to one another as 7 to 6, their values in inches being respectively 19.43 and 16.66.]

The subdivisions of the cubit were the span, equalling half a cubit; the palm or hand-breadth, one-sixth of a cubit; and the digit or finger-breadth, one twenty-fourth of a cubit. The multiples in common use were the fathom, consisting of four cubits, and the reed, of six cubits. Hence the table:

Digit.Palm.Span.Cubit.Fathom.Reed.

Digit (Finger-breadth)1-73in

Palm (Hand-breadth)413.in

Span.12318.75in

Cubit.2462117.52in

Fathom.962484170.+in

Reed.144361261.51105.5in

In the Gospels the cubit is mentioned in Mat 6:27, Luk 12:25, and Joh 21:8. In all these passages it appears as an approximation, and neither requires nor admits or precise determination. Lengths less than that of the cubit are not alluded to. Of greater lengths the following occur, being outside the usual scale as given above. The stadium, or furlong (Luk 24:13, Joh 6:19; Joh 11:18). The term is borrowed from the Greek scale, and appears there as the equivalent of 600 ft. (more precisely 600 ft. 9 in.), or 400 cubits. The mile (Mat 5:41) was also borrowed, but is taken from the Roman scale, and was equal to 7.5 Greek stadia (furlongs), or 3000 cubits (1700 yds.). The days journey (Luk 2:44), which is a common Oriental way of reckoning distances of considerable length at the present day, seems to have been used in ancient times also. It is not, however, reducible to any definite equivalent, and was no doubt a very elastic term. See on this and on Sabbath days journey, art. Journey.

2. Measures of Surface.Of measures of area no mention is made in the Gospels or in the NT anywhere. Occasional allusions to the purchase of land (Mat 13:44; Mat 27:7, Luk 14:18; cf. Act 1:18) are not of such a character as to include the measurement used in these and similar transactions.

3. Measures of Capacity.These naturally fall into liquid and dry measures. Primitively the most common word for measure of volume in Bible lands was perhaps the seah (, , cf. Mat 13:33, which is also the usage of the LXX Septuagint ). This was the measure par excellence. This, however, became differentiated at least as early as before the NT age into a unit of dry measure, and the hin, with twice the capacity of the seah, took its place in the corresponding liquid scale. Nevertheless, in ascertaining the values of both liquid and dry standards of measurement, the most convenient starting-point is the seah. This, on the one hand, is easily traceable in its equivalents in the Graeco-Roman metrology, and, on the other, as the unit on which the ephah-bath is based, furnishes a key to the Palestinian metrology of both dry and liquid varieties.

As to the equivalency of the seah in the classical Graeco-Roman system, the following data give testimony: Josephus (Ant. ix. iv. 5) says, A seah is equal to one and one-half Italian modii. An anonymous writer, cited by Hultsch (Metr. Script. i. 81. 6), speaks to the same effect; so also Jerome (on Mat 13:33), who, however, probably simply reproduces this representation. On the other hand, according to Epiphanius (Metr. Script, i. 82. 8), the seah was equal to one and one-quarter modii (20 sextarii); but that this is not a precise statement appears from the same writers equating the seah with 22 sextarii elsewhere (Metr. Script, i. 82. 9). Indirectly from the identification of the bath, the cor, and the hin by Josephus, with their corresponding Roman equivalents (cf. Ant. viii. ii. 9, xv. ix. 2, iii. viii. 3), the value of the seah is computed at 22 sextarii; and as this agrees with the equation of the Babylonian ephah-bath with 66 sextarii (Hultsch, Griech. and Rom. [Note: Roman.] Metr. ii. p. 412), it may be taken as correct.

This gives us the value of the seah in Roman sextarii. The reduction of the sextarii to present-day English standards may be made either upon the basis of the calculations of Hultsch (Metrol p. 453), which yield a sextarius of .96 pt. (cf. Smith, Diet. of Ant., followed by Harpers Dict. of Class. Lit. and Ant., ed. H. T. Peck), and a seah of 21 + pts. (2 gals. 2 qts. and 1 + pts.); or this reduction may be made upon the basis of the use of the Farnese congius (= 6 sextarii) in the Dresden Museum, which yields a sextarius of .99 pts. The difference in results between these methods amounts to no more than .03 pt. in the Roman sextarius. Neither of the two methods positively excludes, the possibility of error, but the latter appears upon the whole more trustworthy. Thus in the reconstruction of a table we have the equation to start with: sextarius = .99 pt. The seah (22 sext. = 2 Galatians 2 qts. 1.78 pts.) is, then, approximately 23 + pts.

This yields for the dry measure the scale as follows:

Log.Kab.Omer.Seah.Ephah.Cor.

Log.1=1pt.

Kab.41=4pts.

Omer.7.51.81=7pts.

Seah.2463.61=23.75pts.

Ephah.72181031=71.28pts.

Cor (Homer).72018010030101=712.8pts.

And for the liquid the scale as follows:

Log.Hin.Seah.Bath.Cor.

Log1=1pt.

Hin.121=11.9pts.

Seah.2421=23.8pts.

Bath.72631=71.28pts.

Cor.7206030101=712.8pts.

These two scales represent the values of measures of capacity of the later days of Judaism. For OT times the value of the seah would have to be made larger, and the table correspondingly increased. For practical purposes the log = sextarius= pt. equation may be deemed sufficient.

In the Gospels the following allusions to the scales occur. The seah (Mat 13:33, Luk 13:21) is the equivalent of one-third of an ephah, and so is meant to designate generally as large a quantity as was usually handled in household necessities. Three seahs are equal to 35 qts. or 1 bushel. The cor (Luk 16:7) appears under the name of measure, the expression being naturally a general and inexact one. The total quantity intended to be indicated is 100 Cors or 1110 bushels.

Measures not included in the above scales occur as follows. The xestes (, translated cup, Mar 7:4 (8)) was probably a small and handy household vessel, with the capacity of a pint measure, and used as such. The modius (, Mat 5:15, Mar 4:21, Luk 11:33, translation in all the English versions bushel) is. not the English bushel, but the Hebrew seah. The name is borrowed from the Graeco-Roman usage. The measure itself was, like the xestes, a useful household utensil. The metretes (, Joh 2:6, translation firkin) is evidently the bath of the Hebrew scale, containing approximately 9 gallons.

Literature.Hultsch, Griech. u. Rm. Metrologie, ii. (1882), also his Collection of Greek and Roman Sources, under the title of Metrologicorum Scriptorum Reliqui, 2 vols. (18641866); Lehmann, Altbab. Mass u. Gewicht (in Verhandl. d. Berliner Geseltschaft f. Anthropol. 1889); Zuckermann, Das Jdische Masssystem (1867); Nowack, Heb. Arch, i. 198 ff.; Benzinger, Heb. Arch. 178 ff.

A. C. Zenos.

Fuente: A Dictionary Of Christ And The Gospels

Weights And Measures

WEIGHTS AND MEASURES.Since the most important of all ancient Oriental systems of weights and measures, the Babylonian, seems to have been based on a unit of length (the measures of capacity and weight being scientifically derived there from), it is reasonable to deal with the measures of length before proceeding to measures of capacity and weight. At the same time it seems probable that the measures of length in use in Palestine were based on a more primitive, and (so far as we know) unscientific system, which is to be connected with Egypt. The Babylonian system associated with Gudea (c [Note: circa, about.] . b.c. 3000), on statues of whom a scale, indicating a cubit of 30 digits or 19 inches, has been found engraved, was not adopted by the Hebrews.

I. Measures of Length

The Hebrew unit was a cubit 1/6 of a reed, Eze 40:5), containing 2 spans or 6 palms or 24 fingers breadths. The early system did not recognize the foot or the fathom. Measurements were taken both by the 6-cubit rod or reed and the line or fillet (Eze 40:3, Jer 31:39; Jer 52:21, 1Ki 7:15).

The ancient Hebrew literary authorities for the early Hebrew cubit are as follows. The cubit of a man (Deu 3:11) was the unit by which the bedstead of Og, king of Bashan, was measured (cf. Rev 21:17). This implies that at the time to which the passage belongs (apparently not long before the time of Ezekiel) the Hebrews were familiar with more than one cubit, of which that in question was the ordinary working cubit. Solomons Temple was laid out on the basis of a cubit after the first (or ancient) measure (2Ch 3:3). Now Ezekiel (Eze 40:5; Eze 43:13) prophesies the building of a Temple on a unit which he describes as a cubit and a bands breadth, i.e. 7/5 of the ordinary cubit. As in his vision he is practically reproducing Solomons Temple, we may infer that Solomons cubit, i.e. the ancient cubit, was also 7/5 of the ordinary cubit of Ezekiels time. We thus have an ordinary cubit of 6, and what we may call (by analogy with the Egyptian system) the royal cubit of 7 hands breadths. For this double system is curiously parallel to the Egyptian, in which there was a common cubit of 0.450 m. or 17.72 in., which was 6/7 of the royal cubit of 0.525 m. or 20.67 in. (these data are derived from actual measuring rods). A similar distinction between a common and a royal norm existed in the Babylonian weight-system. Its object there was probably to give the government an advantage in the case of taxation; probably also in the case of measures of length the excess of the royal over the common measure had a similar object.

We have at present no means of ascertaining the exact dimensions of the Hebrew ordinary and royal cubits. The balance of evidence is certainly in favour of a fairly close approximation to the Egyptian system. The estimates vary from 16 to 25.2 inches. They are based on: (1) the Siloam inscription, which says: The waters flowed from the outlet to the Pool 1200 cubits, or, according to another reading, 1000 cubits. The length of the canal is estimated at 537.6 m., which yields a cubit of 0.525 to 0.527 m. (20.67 to 20.75 in.) or 0.538 m. (21.18 in.) according to the reading adopted. Further uncertainty is occasioned by the possibility of the number 1200 or 1000 being only a round number. The evidence of the Siloam inscription is thus of a most unsatisfactory kind. (2) The measurements of tombs. Some of these appear to be constructed on the basis of the Egyptian cubit; others seem to yield cubits of 0.575 m. (about 22.6 in.) or 0.641 m. (about 25.2 in.). The last two cubits seem to be improbable. The measurements of another tomb (known as the Tomb of Joshua) seem to confirm the deduction of the cubit of about 0.525 m. (3) The measurement of grains of barley. This has been objected to for more than one reason. But the Rabbinical tradition allowed 144 barley-corns of medium size, laid side by side, to the cubit; and it is remarkable that a recent careful attempt made on these lioes resulted in a cubit of 17.77 in. (0.451 m.), which is the Egyptian common cubit. (4) Recently it has been pointed out that Josephus, when using Jewish measures of capacity, etc., which differ from the Greek or Roman, is usually careful to give an equation explaining the measures to his Greek or Roman readers, while in the case of the cubit he does not do so, but seems to regard the Hebrew and the Roman-Attic as practically the same. The Roman-Attic cubit (11/2 ft.) is fixed at 0.444 m. or 17.57 in., so that we have here a close approximation to the Egyptian common cubit. Probably in Josephus time the Hebrew common cubit was, as ascertained by the methods mentioned above, 0.450 m.; and the difference between this and the Attic-Roman was regarded by him as negligible for ordinary purposes. (5) The Mishna. No data of any value for the exact determination of the cubit are to be obtained from this source. Four cubits is given as the length of a loculus in a rock-cut tomb; it has been pointed out that, allowing some 2 inches for the bier, and taking 5 ft. 6 in. to 5 ft. 8 in. as the average height of the Jewish body, this gives 4 cubits = 5 ft. 10 in., or 171/2 in. to the cubit. On the cubit in Herods Temple, see A. R. S. Kennedy in art. Temple (p. 902b), and in artt. in ExpT [Note: Expository Times.] xx. [1908], p. 24 ff.

The general inference from the above five sources of information is that the Jews had two cubits, a shorter and a longer, corresponding closely to the Egyptian common and royal cubit. The equivalents are expressed in the following table:

Royal System.Common System.

Metres.Inches.Metres.Inches.

Fingers breadth0.0220.860.0190.74

Palm = 4 fingers0.0883.440.0752.95

Span = 3 palms0.26210.330.2258.86

Cubit = 2 spans0.52520.670.45017.72

Reed = 6 cubits3.150124.022.700106.32

Parts and multiples of the unit.The ordinary parts of the cubit have already been mentioned. They occur as follows: the fingers breadth or digit (Jer 52:21, the daktyl of Josephus); the palm or hands breadth (1Ki 7:26, Eze 40:5; Eze 40:43; Eze 43:13 etc.); the span (Exo 28:16; Exo 39:9 etc.). A special measure is the gmed, which was the length of the sword of Ehud (Jdg 3:16), and is not mentioned elsewhere. It was explained by the commentators as a short cubit (hence EV [Note: English Version.] cubit), and it has been suggested that it was the cubit of 5 palms, which is mentioned by Rabbi Judah. The Greeks also had a short cubit, known as the pygn, of 5 palms, the distance from the elbow to the first joint of the fingers. The reed (= 6 cubits) is the only definite OT multiple of the cubit (Eze 40:5). This is the akaina of the Greek writers. The pace of 2Sa 6:13 is probably not meant to be a definite measure. A little way (Gen 35:16; Gen 48:7, 2Ki 5:19) is also indefinite. Syr. and Arab [Note: Arabic.] , translators compared it with the parasang, but it cannot merely for that reason be regarded as fixed. A days journey (Num 11:31, 1Ki 19:4, Jon 3:4, Luk 2:44) and its multiples (Gen 30:36, Num 10:33) are of course also variable.

The Sabbath days journey (Act 1:12) was usually computed at 2000 cubits. This was the distance by which the ark preceded the host of the Israelites, and it was consequently presumed that this distance might be covered on the Sabbath, since the host must be allowed to attend worship at the ark. The distance was doubled by a legal fiction: on the eve of the Sabbath, food was placed at a spot 2000 cubits on, and this new place thus became the travelers place within the meaning of the prescription of Exo 16:29; there were also other means of increasing the distance. The Mt. of Olives was distant a Sabbath days journey from Jerusalem, and the same distance is given by Josephus as 5 stadia, thus confirming the 2000 cubits computation. But in the Talmud the Sabbath days journey is equated to the mil of 3000 cubits or 71/2 furlongs; and the measure threescore furlongs of Luk 24:13, being an exact multiple of this distance, seems to indicate that this may have been one form (the earlier?) of the Sabbath days journey.

In later times, a Byzantine writer of uncertain date, Julian of Ascalon, furnishes information as to the measures in use in Palestine (Provincial measures, derived from the work of the architect Julian of Ascalon, from the laws or customs prevailing in Palestine, is the title of the table). From this we obtain (omitting doubtful points) the following table:

1. The fingers breadth.

2. The palm = 4 fingers breadths.

3. The cubit = 11/2 feet = 6 palms.

4. The pace = 2 cubits = 3 feet = 12 palms.

5. The fathom = 2 paces = 4 cubits = 6 feet.

6. The reed = 11/2 fathoms = 6 cubits = 9 feet = 36 palms.

7. The plethron = 10 reeds = 15 fathoms = 30 paces = 60 cubits = 90 feet.

8. The stadium or furlong = 6 plethora = 60 reeds = 100 fathoms = 200 paces = 400 cubits = 600 feet.

9. (a) The million or mile, according to Eratosthenes and Strabo = 8 1/3 stadia = 8331/3 fathoms.

(b) The million according to the present use = 71/2 stadia = 750 fathoms = 1500 paces = 3000 cubits.

10. The present million of 71/2 stadia = 750 geometric fathoms = 8331/3 simple fathoms; for 9 geometric fathoms = 10 simple fathoms.

We may justifiably assume that the 3000 cubits of 9 (b) are the royal cubits of 0. 525 m. The geometric and simple measures according to Julian thus work out as follows:

Geometric.Simple.

Metres.Inches.Metres.Inches.

Fingers breadth0.0220.860.0200.79

Palm0.0883.440.0803.11

Cubit0.52520.670.47318.62

Fathom2.10082.681.89074.49

Measures of area.For smaller measures of area there seem to have been no special names, the dimensions of the sides of a square being usually stated. For land measures, two methods of computation were in use. (1) The first, as in most countries, was to state area in terms of the amount that a yoke of oxen could plough in a day (cf. the Latin jugerum). Thus in Isa 5:10 (possibly also in the corrupt 1Sa 14:14) we have 10 yoke (tsemed) of vineyard. Although definite authority is lacking, we may perhaps equate the Hebrew yoke of land to the Egyptian unit of land measure, which was 100 royal cubits square (0.2756 hectares or 0.6810 acre). The Greeks called this measure the aroura. (2) The second measure was the amount of seed required to sow an area. Thus the sowing of a homer of barley was computed at the price of 50 shekels of silver (Lev 27:16). The dimensions of the trench which Elijah dug about his altar (1Ki 18:32) have also recently been explained on the same principle; the trench (i.e. the area enclosed by it) is described as being like a house of two seahs of seed (AV [Note: Authorized Version.] and RV [Note: Revised Version.] wrongly as great as would contain two measures of seed). This measure house of two seahs is the standard of measurement in the Mishna, and is defined as the area of the court of the Tabernacle, or 10050 cubits (c. 1648 sq. yds. or 0.1379 hectares). Other measures of capacity were used in the same way, and the system was Babylonian in origin; there are also traces of the same system in the West, under the Roman Empire.

II. Measures of Capacity

The terms handful (Lev 2:2) and the like do not represent any part of a system of measures in Hebrew, any more than in English. The Hebrew measure par excellence was the seah, Gr. saton. From the Greek version of Isa 5:10 and other sources we know that the ephah contained 3 such measures. Epiphanius describes the seh or Hebrew modius as a modius of extra size, and as equal to 11/4 Roman modius = 20 sextarii. Josephus, however, equates it with 11/2 Roman modius = 24 sextarii. An anonymous Greek fragment agrees with this, and so also does Jerome in his commentary on Mat 13:33. Epiphanius elsewhere, and other writers, equate it with 22 sextarii (the Bab. [Note: Babylonian.] ephah is computed at 66 sextarii). The seh was used for both liquid and dry measure.

The ephah (the word is suspected of Egyp. origin) of 3 sehs was used for dry measure only; the equivalent liquid measure was the bath (Gr. bados, batos, keramion, choinix). They are equated in Eze 45:11, each containing 1/10 of a homer. The ephah corresponds to the Gr. artabe (although in Isa 5:10 six artabai go to a homer) or metrtes. Josephus equates it to 72 sextarii. The bath was divided into tenths (Eze 45:14), the name of which is unknown; the ephah likewise into tenths, which were called mer or issaron (distinguish from homer = 10 ephahs). Again the ephah and bath were both divided into sixths (Eze 45:13); the 1/6 bath was the hin, but the name of the 1/6 ephah is unknown.

The homer (Eze 45:11, Hos 3:2) or cor (Eze 45:14, Luk 16:7; Gr. koros) contained 10 ephahs or baths, or 30 sehs. (The term cr is used more especially for liquids.) It corresponded to 10 Attic metrtai (so Jos. [Note: Josephus.] Ant. XV. ix. 2, though he says medimni by a slip). The word cr may be connected with the Bab. [Note: Babylonian.] gur or guru.

The reading lethek which occurs in Hos 3:2, and by Vulgate and EV [Note: English Version.] is rendered by half a homer, is doubtful. Epiphanius says the lethek is a large mer (gomer) of 15 modii.

The hin (Gr. hein) was a liquid measure = 1/2 seh. In Lev 19:36 the LXX [Note: Septuagint.] renders it chous. But Josephus and Jerome and the Talmud equate it to 2 Attic choes = 12 sextarii. The hin was divided into halves, thirds (= cab), quarters, sixths, and twelfths (= log). In later times there were a sacred hin = of the ordinary hin, and a large hin = 2 sacred hins = 3/2 ordinary hin. The Egyp. hen, of much smaller capacity (0. 455 1.) is to be distinguished.

The omer (Gr gomor) is confined to dry measure. It is 1/10 ephah and is therefore called assaron or issaron (AV [Note: Authorized Version.] tenth deal). Epiphanius equates it accordingly to 71/5 sextarii, Eusebius less accurately to 7 sextarii. Eusebius also calls it the little gomor; but there was another little gomor of 12 modii, so called in distinction from the large gomor of 15 modii (the lethek of Epiphanius). Josephus wrongly equates the gomor to 7 Attic kotylai.

The cab (2Ki 6:25, Gr. kabos) was both a liquid and a dry measure. From Josephus and the Talmud it appears that it was equal to 4 sextarii, or 1/2 hin. In other places it is equated to 6 sextarii, 5 sextarii (great cab = 1 1/4 cab), and 1/4 modius (Epiphanius, who, according to the meaning he attaches to modius here, may mean 4, 5, 51/2, or 6 sextarii l).

The log (Lev 14:10; Lev 14:12) is a measure of oil; the Talmud equates it to 1/12 hin or 1/24 seh, i.e. 1/4 cab. Josephus renders the 1/4 cab of 2Ki 6:25 by the Greek xestes or Roman sextarius, and there is other evidence to the same effect.

A measure of doubtful capacity is the nebet of wine (Gr. version of Hos 3:2, instead of lethek of barley). It was 150 sextarii, by which may be meant ordinary sextarii or the larger Syrian sextarii which would make it = 3 baths. The word means wine-skin.

We thus obtain the following table (showing a mixed decimal and sexagesimal system) of dry and liquid measures. Where the name of the liquid differs from that of the dry measure, the former is added in italics. Where there is no corresponding liquid measure, the dry measure is asterisked.

The older portion of this system seems to have been the sexagesimal, the mer and 1/10 bath and the lethek (if it ever occurred) being intrusions.

Homer or cor1

* Lethek21

Ephah, bath1051

Seh301531

1/6 ephah, hin6030621

Omer or issaron, 1/10 bath.100501031/312/31

1/2 hin12060124211/51

Cab18090186314/511/21

1/4 hin240120248423/8211/31

1/2 cab, 1/8 hin3601803612633/53211/21

1/4 cab, log72036072241271/564321

* 1/8 cab14407201444824142/51286421

When we come to investigate the actual contents of the various measures, we are, in the first instance, thrown back on the (apparently only approximate) equations with the Roman sextarius (Gr. xestes) and its multiples already mentioned. The tog would then be the equivalent of the sextarius, the bath of the metrtes, the cab (of 6 logs) of the Ptolemaic chous. If log and sextarius were exact equivalents, the ephah of 72 logs would = 39.39 litres, = nearly 8 2/3 gallons. This is on the usual assumption that the sextarius was 0.545 1. or 096 Imperial pints. But the exact capacity of the sextarius is disputed, and a capacity as high as 0.562 l. or 0.99 imperial pint is given for the sextarius by an actually extant measure. This would give as the capacity of the ephah-bath 40.46 l. or 71.28 pints. But it is highly improbable that the equation of log to sextarius was more than approximate. It is more easy to confound closely resembling measures of capacity than of length, area, or weight.

Name of Measure.(1) Lg = 0.505 1.(2) Ephah = 65 Pints.(3) Lg = 0.99 Pint.Rough Approximation on Basis of (3).

Litres.Gallons.Litres.Gallons.Litres.Gallons.

Homer (cor)363.780.053369.281.2540589.2811 bushels

Lethek181.8540.026184.640.6220244.6451/2 bushels

Ephah-bath36.378.00536.928.12540.58.9289 gallons

Seh12.1202.66812.32.70813.52.97611/2 pecks

Great hin9.0902.0019.182.23410.082.23221/4 gallons

Hin6.0601.3346.121.3566.721.48811/2 gallons

Sacred hin4.5451.0004.591.1175.041.1169 pints

Omer3.6570.8003.670.8134.058.89371/5 pints

1/2 hin3.0300.6673.060.6783.360.7446 pints

Cab2.0200.4452.050.4512.250.4964 pints

1/2hin1.5150.3331.530.3391.680.3723 pints

1/2 cab1.0100.2221.020.2261.120.2482 pints

Log0.5050.1110.510.1130.560.1241 pint

1/2 cab0.2520.0550.260.0560.280.0621/2 pint

Other methods of ascertaining the capacity of the ephah are the following. We may assume that it was the same as the Babylonian unit of 0.505 l. (0.89 pint). This would give an ephah of 36.37 l., or nearly 8 gallons or 66.5 sextarii of the usually assumed weight, and more or less squares with Epiphanius equation of the seh or 1/3 ephah with 22 sextarii. Or we may connect it with the Egyptian system, thus: both the ephah-hath and the Egyptian-Ptolemaic artabe are equated to the Attic metrtes of 72 sextarii. Now, in the case of the artabe this is only an approximation, for it is known from native Egyptian sources (which give the capacity in terms of a volume of water of a certain weight) that the artabe was about 36.45 l., or a little more than 64 pints. Other calculations, as from a passage of Josephus, where the cor is equated to 41 Attic (Grco-Roman) modii (i.e. 656 sextarii), give the same result. In this passage modii is an almost certain emendation of medimni, the confusion between the two being natural in a Greek MS. There are plenty of other vague approximations, ranging from 60 to 72 sextarii. Though the passage of Josephus is not quite certain in its text, we may accept it as having the appearance of precise determination, especially since it gives a result not materially differing from other sources of information.

In the above table, the values of the measures are given according to three estimates, viz. (1) log = Babylonian unit of 0.505 l.; (2) ephah = 65 pints; (3) log = sextarius of 0.99 pint.

Foreign measures of capacity mentioned in NT.Setting aside words which strictly denote a measure of capacity, but are used loosely to mean simply a vessel (e.g. cup in Mar 7:4), the following, among others, have been noted. Bushel (Mat 5:15) is the tr. [Note: translate or translation.] of modius, which represents seh. Firkin is used (Joh 2:6) to represent the Greek metrtes, the rough equivalent of the bath. Measure in Rev 6:6 represents the Gr. choinix of about 2 pints.

III. Measures of Weight

The system of weights used in Palestine was derived from Babylonia. Egypt does not seem to have exerted any influence in this respect. The chief denominations in the system were the talent (Gr. talanton, Heb. kikkar meaning, apparently, a round cake-like object), the mina (Gr. mna, Heb. maneh; tr. [Note: translate or translation.] pound in 1Ki 10:17 and elsewhere, though pound in Joh 12:3; Joh 19:39 means the Roman pound of 327.45 grammes or 5053.3 grstroy), and the shekel (Gr. siklos or siglos, Heb. sheqel, from shqat, to weigh). The shekel further was divided into 20 gerahs (gerah apparently = the Babylonian giru, a small weight of silver). [References to shekels or other denominations of precious metal in pre-exilic times must be to uncoined metal, not to coins, which are of later origin.] For ordinary purposes 60 shekels made a mina, and 60 min a talent; but for the precious metals a mina of 50 shekels was employed, although the talent contained 60 min, as in the other case. There were two systems, the heavy and the light, the former being double of the latter. The evidence of certain extant Bab. [Note: Babylonian.] weights proves that there was a very complex system, involving at least two norms, one of which, the royal, used for purposes of taxation, was higher than the other, the common. For our purposes, we may here confine ourselves to the common norm in the heavy and light systems. It may, however, be mentioned that the kings weight, according to which Absaloms hair weighed 200 shekels (2Sa 14:26), is probably to be referred to this royal norm. Combining the evidence of the extant Bab. [Note: Babylonian.] weights with the evidence of later coins of various countries of the ancient world, and with the knowledge, derived from a statement in Herodotus, that the ratio of gold to silver was as 131/3 to 1, we obtain the following results:

Heavy.Light.

Grains Troy.Grammes.Grains Troy.Grammes.

Talent757,38049,077378,69024,539

Mina12,6238186,311.5409

Shekel252.516.36126.238.18

Value of the gold shekel in silver3,366.6218.11,684.3109.1

i.e., ten pieces of silver of336.621.81168.410.91

Or fifteen pieces of silver of224.414.54112.27.27

N. B.One heavy talent = 98.154 lbs. avoirdupois; one heavy mina = 1.636 lb. avoirdupois.

Now the pieces of 1/10 and 1/15 of the value of the gold shekel in silver were the units on which were based systems known as the Babylonian or Persic and the Phnician respectively; the reason for the names being that these two standards seem to have been associated by the Greeks, the first with Persia, whose coins were struck on this standard, the second with the great Phnician trading cities, Sidon, Tyre, etc. For convenience sake the names Babylonian and Phnician may be retained, although it must be remembered that they are conventional. The above table gives the equivalents in weights on the two systems, both for the precious metals (in which the mina weighed 50 shekels) and for trade (in which it weighed 60 shekels).

Babylonian.Phnician.

Light.Heavy.Light.

Grains.Grammes.Grains.Grammes.Grains.Grammes.Grains.Grammes.

Shekel336.621.81168.410.91224.414.54112.27.27

Mina of 50 shekels16,8301090.58,420545.2511,2207275,610363.5

Mina of 60 shekels20,1961308.6810,098654.3413,464872.456,732436.23

Talent of 3000 shekels1,009,80065,430504,90032,715673,20043,620336,60021,810

Talent of 3600 shekels1,211,76078,520.77605,88039,260.38807,84052,347.18403,92026,173.59

The evidence of actual weights found in Palestine is as follows: 1. 2. 3. Three stone weights from Tell Zakary, inscribed apparently netseph, and weighing

10.21grammes =157.564grains troy.

9.5grammes =146.687grains troy.

9.0grammes =138.891grains troy.

4. A weight with the same inscription, from near Jerusalem, weighing 8.61 grammes = 134.891 grains troy.

5. A weight from Samaria inscribed apparently 1/4 netseph and 1/2 shekel, weighing 2.54 grammes = 39.2 grains troy; yielding a netseph of 9.16 grammes = 156.8 grains troy. This has been dated in the 8th cent. b.c.; and all the weights are apparently of pre-exilic date. There are other weights from Gezer, which have, without due cause, been connected with the netseph standard; and a second set of weights from Gezer, Jerusalem, Zakary, and Tell el-Judeideh may be ignored, as they seem to bear Cypriote inscriptions, and represent a standard weight of 93 grammes maximum. Some addition must be allowed to Nos. 2 and 3 of the above-mentioned netseph weights, for fracture, and probably to No. 4, which is pierced. The highest of these weights is some 10 grains or 0.7 grammes less than the light Bab. [Note: Babylonian.] shekel. It probably, therefore, represents an independent standard, or at least a deliberate modification, not an accidental degradation, of the Bab. [Note: Babylonian.] standard. Weights from Naucratis point to a standard of about 80 grains, the double of which would be 160 grains, which is near enough to the actual weight of our specimens (maximum 1571/2 grains). We need not here concern ourselves with the origin of this standard, or with the meaning of netseph; there can be no doubt of the existence of such a standard, and there is much probability that it is connected with the standard which was in use at Naucratis. Three weights from Lachish (Tell el-Hesy) also indicate the existence of the same 80-grain standard in Palestine. The standard in use at the city of Aradus (Arvad) for the coinage is generally identified with the Babylonian; but as the shekel there only exceptionally exceeds 165 grains, it, too, may have been an approximation to the standard we are considering. But in Hebrew territory there can be no doubt that this early standard was displaced after the Exile by a form of the Phnician shekel of 14.54 grammes, or 224.4 grains. It has, indeed, been thought that this shekel can be derived by a certain process from the shekel of 160 grains; but on the whole the derivation from the gold shekel of 126.23 grains suggested above is preferable.

The evidence as to the actual use of this weight in Palestine is as follows: From Exo 38:25 f. it appears that the Hebrew talent contained 3000 shekels. Now, Josephus equates the mina used for gold to 21/2 Roman pounds, which is 12,633.3 grains troy, or 818.625 grammes; this is only 10 grains heavier than the heavy mina given above. From Josephus also we know that the kikkar or talent contained 100 min. The talent for precious metals, as we have seen, contained 3000 shekels; therefore the shekel should be 10012633/3000 grains = 421 grains. We thus have a heavy shekel of 421 grains, and a light one of 210.5 grains. There is other evidence equating the Hebrew shekel to weights varying from 210.48 to 210.55 grains. This is generally supposed to be the Phnician shekel of 224.4 grains in a slightly reduced form. Exactly the same kind of reduction took place at Sidon in the course of the 4th cent. b.c., where, probably owing to a fall in the price of gold, the weight of the standard silver shekel fell from about 28.60 grammes (441.36 grains) to 26.30 grammes (405.9 grains). A change in the ratio between gold and silver from 131/3:1 to 121/2:1 would practically, in a country with a coinage, necessitate a change in the weight of the shekel such as seems to have taken place here; and although the Jews had no coinage of their own before the time of the Maccabees, they would naturally be influenced by the weights in use in Phnicia. The full weight shekel of the old standard probably remained in use as the shekel of the sanctuary, for that weight was 20 gerahs (Eze 45:12, Exo 30:13), which is translated in the LXX [Note: Septuagint.] by 20 obols, meaning, presumably, 20 Attic obols of the time; and this works out at 224.2 grains. This shekel was used not only for the silver paid for the ransom of souls, but also for gold, copper, and spices (Exo 30:23-24; Exo 38:24 ff.); in fact, the Priests Code regarded it as the proper system for all estimations (Lev 27:25). The beka = 1/2 shekel is mentioned in Gen 24:22, Exo 38:26.

Foreign weights in the NT.The pound of spikenard (Joh 12:3) or of myrrh and aloes (19:39) is best explained as the Roman libra (Gr. litra) of 327.45 grammes. The pound in Luk 19:13 f. is the money-mina or 1/60 of the Roman-Attic talent (see art. Money, 7 (j)). The talent mentioned in Rev 16:21 also probably belongs to the same system.

For further information see esp. A. R. S. Kennedy, art. Weights and Measures in Hastings DB [Note: Dictionary of the Bible.] , with bibliography there given. Recent speculations on the Heb. systems, and publications of weights will be found in PEFSt [Note: Quarterly Statement of the same.] , 1902, p. 80 (three forms of cubit, 18 in., 14.4 in., and 10.8 in.); 1902, p. 175 (Conder on general system of Hebrew weights and measures); 1904, p. 209 (weights from Gezer, etc.); 1906, pp. 182 f., 259 f. (Warren on the ancient system of weights in general); Comptes Rendus de lAcad. des Inscr. 1906, p. 237 f. (Clermont-Ganneau on the capacity of the hin).

G. F. Hill.

Fuente: Hastings’ Dictionary of the Bible

Weights and Measures

wats mezhur : The system of weights and measures in use among the Hebrews was derived from Babylonia and Egypt, especially from the former. The influence of these countries upon Palestine has long been recognized, but archaeological investigations in recent years have shown that the civilization of Babylonia impressed itself upon Syria and Palestine more profoundly in early times than did that of Egypt. The evidence of this has been most clearly shown by the discovery of the Tell el-Amarna Letters, which reveal the fact that the official correspondence between the Egyptian kings and their vassals in these lands was carried on in the language of Babylonia long after its political influence had been supplanted by that of Egypt. It is natural, then, that we should look to Babylonia for the origin of such important elements of civilization as a system of weights and measures.

1. Linear Measures:

It was quite natural that men should have found a standard for linear measures in the parts of the human body, and we find the cubit, originally the length of the forearm, taken as the standard, and the span, the palm and the digit, or finger-breadth, associated with it in linear measurement. They do not seem to have employed the foot, though it is represented in the two-thirds of the cubit, which was used by the Babylonians in the manufacture of building-brick.

This system, though adequate enough for man in the earliest times, was not so for an advanced stage of civilization, such as the Babylonians reached before the days of Abraham, and we find that they had introduced a far more accurate and scientific system (see CUBIT). They seem to have employed, however, two cubits, of different lengths, one for commercial purposes and one for building. We have no undoubted examples of either, but judging by the dimensions of their square building-bricks, which are regarded as being two-thirds of a cubit on a side, we judge the latter to have been of about 19 or 20 inches. Now we learn from investigations in Egypt that a similar cubit was employed there, being of from 20.6 to 20.77 inches, and it can hardly be doubted that the Hebrews were familiar with this cubit, but that in more common use was certainly shorter. We have no certain means of determining the length of the ordinary cubit among the Hebrews, but there are two ways by which we may approximate its value. The Siloam Inscription states that the tunnel in which it was found was 1,200 cubits long. The actual length has been found to be about 1, 707 feet, which would give a cubit of about 17.1 in. (see PEFS, 1902, 179). Of course the given length may be a round number, but it gives a close approximation.

Again, the Mishna states that the height of a man is 4 cubits, which we may thus regard as the average stature of a Jew in former times. By reference to Jewish tombs we find that they were of a length to give a cubit of something over 17 inches, supposing the stature to be as above, which approximates very closely to the cubit of the Siloam tunnel. The consensus of opinion at the present day inclines toward a cubit of 17.6 inches for commercial purposes and one of about 20 inches for building. This custom of having two standards is illustrated by the practice in Syria today, where the builder’s measure, or dra’, is about 2 inches longer than the commercial.

Of multiples of the cubit we have the measuring-reed of 6 long cubits, which consisted of a cubit and a hand-breadth each (Eze 40:5), or about 10 feet. Another measure was the Sabbath day’s journey, which was reckoned at 2,000 cubits, or about 1,000 yards. The measuring-line was used also, but whether it had a fixed length we do not know. See SABBATH DAY’S JOURNEY; MEASURING LINE.

In the New Testament we have the fathom (, orguia), about 6 feet, and the furlong (, stadion), 600 Greek feet or 606 3/4 English feet, which is somewhat less than one-eighth of a mile. The mile (, mlion) was 5,000 Roman feet, or 4, 854 English feet, somewhat less than the English mile.

Linear Measure

Finger or digit (, ‘ecba)about in.

Hand-breadth or palm (, tephah)4 digitsabout 3 in.

Span (, zereth)3 palmsabout 9 in.

Cubit (, ‘ammah)2 spansabout 17.6 in.

Reed (, kaneh)6 cubits, 6 palmsabout 10 ft.

Sabbath day’s journey ( , sabbatou hodos)2,000 cubitsabout 3,600 ft.

2. Measures of Capacity:

Regarding the absolute value of the measures of capacity among the Hebrews there is rather more uncertainty than there is concerning those of length and weight, since no examples of the former have come down to us; but their relative value is known. Sir Charles Warren considers them to have been derived from the measures of length by cubing the cubit and its divisions, as also in the case of weight. We learn from Eze 45:11 that the bath and ephah were equivalent, and he (Warren) estimates the capacity of these as that of 1/30 of the cubit cubed, or about 2, 333.3 cubic inches, which would correspond to about 9 gallons English measure. Assuming this as the standard, we get the following tables for liquid and dry measure: Se’ah and lethekh, in the above, occur in the Hebrew text, but only in the margin of the English. It will be noticed that the prevailing element in these tables is the duodecimal which corresponds to the sexagesimal of the Babylonian system, but it will be seen that in the case of weights there was a tendency on the part of the Hebrews to employ the decimal system, making the maneh 50 shekels instead of 60, and the talent 3,000 instead of 3,600, of the Babylonian, so here we see the same tendency in making the omer the tenth of the’ephah and the’ephah the tenth of the homer or kor.

Liquid Measure

1 log (, logh, Lev 14:10)appr. 1 pint

4 logs, 1 kab (, kabh, 2Ki 6:25)appr. 2 qts.

12 logs, 3 kabs, 1 hin (, hn, Exo 30:24)appr. 1 gals.

72 logs, 18 kabs, 6 hins, 1 bath (, bath, Ezk Eze 45:10)appr. 9 gals.

720 logs, 180 kabs, 60 hins, 10 baths, 1 homer or kor (, homer, , kor, Ezk Eze 45:14)appr. 90 gals.

Dry Measure

1 log appr. 1 pint

4 logs, 1 kab appr. 2 qts.

7 logs, 1 omer (, omer, Exo 16:16)appr. 3 qts., 1 1/5 pts.

24 logs, 6 kabs, 3 omers, 1 seah (, seah, 1Ki 18:32)appr. 1 pecks

72 logs, 18 kabs, 10 omers, 3 seahs, 1 ephah (, ‘ephah, Exo 16:36)appr. 4 pecks

360 logs, 90 kabs, 50 omers, 15 seahs, 5 ephahs, 1 lethech (, lethekh, Hos 3:2)appr. 5 bu., 2 pecks

720 logs, 180 kabs, 100 omers, 30 seahs, 10 ephahs, 2 lethechs, 1 homer or kor (Ezk Eze 45:14)appr. 11 bu., 1 peck

3. Weights:

Weights were probably based by the ancients upon grains of wheat or barley, but the Egyptians and Babylonians early adopted a more scientific method. Sir Charles Warren thinks that they took the cubes of the measures of length and ascertained how many grains of barley corresponded to the quantity of water these cubes would contain. Thus, he infers that the Egyptians fixed the weight of a cubic inch of rain water at 220 grains, and the Babylonians at 222 2/9. Taking the cubic palm at 25, 928 cubic inches, the weight of that quantity of water would be 5, 760 ancient grains. The talent he regards as the weight of 2/3 of a cubit cubed, which would be equal to 101, 6 cubic palms, but assumes that for convenience it was taken at 100, the weight being 576,000 grains, deriving from this the maneh (1/60 of the talent) of 9,600 grains, and a shekel (1/50 of the maneh) 192 grains. But we have evidence that the Hebrew shekel differed from this and that they used different shekels at different periods. The shekel derived from Babylonia had a double standard: the light of 160 grains, or 1/3600 of the talent; and the heavy of just double this, of 320 grains. The former seems to have been used before the captivity and the latter after. The Babylonian system was sexagesimal, i.e. 60 shekels went to the maneh and 60 manehs to the talent, but the Hebrews reckoned only 50 shekels to the maneh, as appears from Exo 38:25, Exo 38:26, where it is stated that the amount of silver collected from 603, 550 males was 100 talents and 1, 775 shekels, and, as each contributed a half-shekel, the whole amount must have been 301, 775. Deducting the 1, 775 shekels mentioned besides the 100 talents, we have 300,000 or 3,000 to the talent, and, as there were 60 manehs in the talent, there were 50 shekels to each maneh. When the Hebrews adopted this system we do not know, but it was in vogue at a very early date.

The shekel was divided into gerahs, 20 to a shekel (Exo 30:13). The gerah (, gerah) is supposed to be some kind of seed, perhaps a bean or some such plant. The shekel of which it formed a part was probably the royal or commercial shekel of 160 grains, derived from Babylon. But the Hebrews certainly had another shekel, called the Phoenician from its being the standard of the Phoenician traders. This would be natural on account of the close connection of the two peoples ever since the days of David and Solomon, but we have certain evidence of it from the extant examples of the monetary shekels of the Jews, which are of this standard, or very nearly so, allowing some loss from abrasion. The Phoenician shekel was about 224 grains, varying somewhat in different localities, and the Jewish shekels now in existence vary from 212 to 220 grains. They were coined after the captivity (see COINS), but whether this standard was in use before we have no means of knowing.

Examples of ancient weights have been discovered in Palestine by archaeological research during recent years, among them one from Samaria, obtained by Dr. Chaplin, bearing the inscription, in Hebrew rebha neceph ( ). This is interpreted, by the help of the cognate Arabic, as meaning quarter-half, i.e. of a shekel. The actual weight is 39.2 grains, which, allowing a slight loss, would correspond quite closely to a quarter-shekel of the light Babylonian standard of 160 grains, or the quarter of the half of the double standard. Another specimen discovered at Tell Zakariyeh weighs 154 grains, which would seem to belong to the same standard. The weights, of which illustrations are given in the table, are all in the collection of the Syrian Protestant College, at Beirut, and were obtained from Palestine and Phoenicia and are of the Phoenician standard, which was the common commercial standard of Palestine. The largest, of the spindle or barrel type, weighs 1, 350 grains, or 87.46 grams, evidently intended for a 6-shekel weight, and the smaller ones of the same type are fractions of the Phoenician shekel. They were of the same standard, one a shekel and the other a two-shekel weight. They each have 12 faces, and the smaller has a lion stamped on each face save one, reminding us of the lion-weights discovered in Assyria and Babylonia. The spindle weights are of black stone, the others of bronze.

The above is the Phoenician standard. In the Babylonian the shekel would be 160 or 320 grains; the maneh 8,000 or 16,000, and the talent 480,000 or 960,000 grains, according as it was of the light or heavy standard.

Table of Hebrew Weights

Gerah (Exo 30:13, , gerah)about 11 grains

Beka (half-shekel, Exo 38:26, (, beka)about 122 grains

Shekel (, shekel)about 224 or 225 grains

Maneh = 50 shekels (pound, 1Ki 10:17, , maneh)about 11,200 grains

Talent = 60 manehs or 3,000 shekels (Exo 38:25, , kikkar)about 672,000 grains

Fuente: International Standard Bible Encyclopedia

Weights and Measures

This is a subject on which our knowledge is by no means complete and satisfactory, as the notices respecting it which the Bible supplies are fragmentary and scattered.

With respect to the coins in use among the Hebrews, it is evident that there prevailed among the Hebrews at an early period a very considerable and much employed metallic medium. Mention is made of talents, shekels, half-shekels, and gerahs. It is impossible to determine with absolute certainty the relative value of these coins, but the following table has been constructed from an examination of the coins of Simon Maccabaeus, and is probably very nearly correct:

CoinParis Grains

Gerah13.7

Bekah, or common shekel137

Sacred shekel274

Maneh13,700

Talent822,000

These conclusions find corroboration by being compared with the weights of other Eastern nations, and the whole inquiry authorizes the inference that one general system prevailed in the more civilized nations, being propagated from the East, from an early period of history.

In the New Testament (Mat 17:24) the Temple-tax is a didrachm; from other sources we know that this ‘tribute’ was half a shekel; and in Mat 17:27 the stater is payment of this tax for two persons. Now the statera very common silver Attic coin, the tetradrachmweighed 328.8 Paris grains; thus not considerably surpassing the sacred shekel (274 Paris grains). And there is reason in the passage of Matthew and in early writers for regarding the stater of the New Testament as the same with the Attic tetradrachm.

Names of measures of length are for the most part taken from members of the human body, which offered themselves, so to say, naturally for the purpose, and have generally been used in all times and places in instances where minute accuracy was not demanded.

At the basis of the Hebrew system of measures of length lies the cubit, the forearm, or the distance from the point of the elbow to the tip of the third finger.

A longer measure, applied in measuring buildings, was the reed, or more properly ‘rod’ (Eze 41:8; Rev 21:15). Smaller measures of length were,

1.a span, from a root meaning to expand (the hand).

2.The breadth of the hand (1Ki 7:26; Exo 25:25).

3.The finger (Jer 52:21), the denomination of the smallest measure of length.

Thus we have the breadth of the finger, of the hand, of the spanthe length from the tip of the little finger to the point of the thumband the cubit.

As we have no unit of measure given us in the Scriptures, nor preserved to us in the remains of any Hebrew building, and as neither the Rabbins nor Josephus afford the information we want, we have no resource but to apply for information to the measures of length used in other countries. We go to the Egyptians. The longer Egyptian cubit contained about 234.333 Paris lines, the shorter about 204.8. According to this the Hebrew measures of length were these:

MeasureParis Lines

Sacred cubit234.333

The span117.166

The palm39.055

The finger9.7637

Common cubit204.8

The span102.4

The palm34.133

The finger8.533

The two sets of measures, one for dry, another for liquid things, rest on the same system, as appears from the equality of the standard for dry-goods, namely the ephah, with that for liquids, namely bath. Mention is made of the homer, cab, bath and ephahwhich are the same, hin, and log. The relations of these measures to the homer, the greatest of them, is exhibited in the following table:

Homer1

Bath and Ephah101

Seah3031

Hin60621

Gomer100103 1/31 2/31

Cab18018631 4/51

Log7207224127 1/541

The actual size of these measures, as stated by Josephus, is as follows:

Size Par. cub. in.Weight in Water Par. gr.

Homer19857.77398000

Ephah1985.77739800

Seah661.92246600

Hin330.96123300

Gomer198.57773980

Cab110.3241100

Log27.5810275

Bckh has proved that it is in Babylon we are to look for the foundations of the metrological systems of the ancient world; for the entire system of measures, both eastern and western, must be referred to the Babylonish foot as to its basis. On Babylon also the ancient world was dependent for its astronomy. Hence Babylon appears as the land which was the teacher of the east and the west in astronomical and mathematical knowledge, standing as it were in the middle of the ancient world, and sending forth rays of light from her two extended hands. Palestine could not be closed against these illuminations, which in their progress westward must have enlightened its inhabitants, who appear to have owed their highest earthly culture to the Babylonians and the Egyptians.

Fuente: Popular Cyclopedia Biblical Literature

Weights and Measures

In the O.T. money was weighed. The first recorded transaction in scripture is that of Abraham buying the field of Ephron the Hittite for four hundred shekels of silver, which Abraham ‘weighed’ to Ephron. Gen 23:15-16. The shekel here was a weight. Judas Maccabaeus, about B.C. 141, was the first to coin Jewish money, though there existed doubtless from of old pieces of silver of known value, which passed from hand to hand without being always weighed. Herod the Great coined money with his name on it; and Herod Agrippa had some coins; but after that the coins in Palestine were Roman. The following tables must be taken approximately only: the authorities differ.

WEIGHTS.

The principal weights in use were as follows with their approximate equivalents:

AVOIRDUPOIS.

Poundsozs.drams.

Gerah (1/20 of a shekel)–0.439

Bekah ( of a shekel)–4.390

Shekel–8.780

Maneh or pound (60 shekels)2014.800

Talent, kikkah (50 maneh)102144.000

Talent of Lead (Zec 5:7),’weighty piece,’ margin.

Talent (Rev 16:21):if Attic = about 55 lbs.

Pound, (Joh 12:3; Joh 19:39):about 12 oz. avoirdupois.

It must be noted that there are two shekels mentioned in the Old Testament: one according to ‘the king’s weight,’ probably the standard shekel used for all ordinary business, as in Exo 38:29; Jos 7:21; 2Sa 14:26; Amo 8:5; and another called the ‘shekel of the sanctuary,’ of which it is said in Exo 30:13; Lev 27:25; Num 3:47; Num 18:16, ‘the shekel is 20 gerahs,’ implying perhaps that the common shekel was different. Michaelis says that the proportion was as 5 to 3, the business shekel being the smaller.

This seems confirmed by the word maneh in the following passages. By comparing 1Ki 10:17 with 2Ch 9:16 it will be seen that a maneh equals 100 shekels (probably, for the word ‘shekels’ has been added by the translators); whereas in Eze 45:12 the maneh equals 60 shekels, because the latter would be shekels of the sanctuary. The passage in Ezekiel is obscure, but the sense appears to be that three weights (20, 25, and 15 shekels) should be their maneh, which makes, as in the above table, a maneh = 60 shekels. Some modern tables give the maneh as equal to 50 shekels, from the supposition that this is what is meant in Eze 45:12 in the LXX. The maneh is translated ‘pound’ in 1Ki 10:17; Ezr 2:69; Neh 7:71-72.

The word bekah occurs in Exo 38:26; it signifies ‘half,’ and is ‘half shekel’ in Exo 30:13.

MONEY.

If the weights in the foregoing list be approximately correct, and silver be taken at 5/- per ounce, and gold at 4 per ounce Troy, the money value will be about

.s.d.

Gerah (1/20 of a shekel)001.5Exo 30:13.

Bekah, beqa ( of a shekel)013Gen 24:22.

Shekel026Gen 23:15.

Dram (daric, a Persian gold coin) about1201Ch 29:7.

Maneh or pound, 60 shekels7100Eze 45:12.

Talent of Silver37500Ezr 7:22.

Talent of Gold600000Exo 25:39.

With respect to ‘Piece of money’ (Gen 33:19; Job 42:11) and ‘Piece of silver’ (Jos 24:32) qesitah, Gesenius compares Gen 33:19 with Gen 23:16 and supposes the weight to equal 4 shekels.

.s.d.

Mite, 003/32Mar 12:42.

Farthing, 003/16Mat 5:26.

Farthing, 000Mat 10:29.

Penny, 007Mat 20:2.

Piece of silver, 007Luk 15:8-9.

Tribute money, 013Mat 17:24.

Piece of money, 027Mat 17:27.

Pound, 347Luk 19:13-25.

Talent (Roman) 193150Mat 18:24.

Piece of silver, 026in Mat 26:15.

Money, indefiniteMat 25:18.

The Greek word is the common word for ‘silver,’ and ‘money,’ asl’argent in French. ‘Piece of silver’ in the A.V. is always except in Luk 15:8-9, where it is .

The above gives no idea of the purchasing value of these sums, which often varied. A penny () was the usual daily wages of a working man: its purchasing value then must have been considerably more than it is now.

LIQUID MEASURE.

Caph0.552pints

Log (1.3 caphs)0.718”Lev 14:10-24.

Cab (4 logs)2.872” 2Ki 6:25.

Hin (12 logs)1.077gallonsExo 29:40.

Bath, Ephah (72 logs)6.462”1Ki 7:26.

Cor, Homer (720 logs)64.620”Eze 45:14.

Pot, 0.96pintsMar 7:4; Mar 7:8.

Measure, 7.5gallonsLuk 16:6.

Firkin, 8.625”Joh 2:6.

Measure, 64.133”Luk 16:7.

DRY MEASURE.

Log0.718pints

Cab (4 logs)2.872”2Ki 6:25.

Omer (1.8 cabs)5.169”Exo 16:16; Exo 16:36.

Tenth deal (tenth of an Ephah)5.169”Exo 29:40.

Measure, seah (6 cabs)2.154gallons1Sa 25:18.

Ephah (18 cabs)6.462″Lev 5:11.

Half Homer, lethek (90 cabs)4.040bushelsHos 3:2.

Homer, chomer (180 cabs)8.081”Lev 27:16.

Measure, 2.000pintsRev 6:6.

Bushel, 2.000gallonsMat 5:15.

Measure, 2.875”Mat 13:33.

LONG MEASURE.

Finger or Digit, etsba .7584inchesJer 52:21.

Handbreadth or Palm (4 digits), tephach3.0337”1Ki 7:26.

Span, zereth (3 palms)9.1012”Exo 28:16.

Cubit, ammah, (2 spans)18.2025”Gen 6:15.

Fathom, (4 Cubits)6.0675feetAct 27:28.

Reed, qaneh, (6 cubits)9.1012”Eze 40:3-8.

Furlong, (400 cubits)606.750”Luk 24:13.

Sabbath-day’s journey (2000 cubits)3033.75”Act 1:12.

Mile, (3,200 cubits)4854.0”Mat 5:41.

Acre. As much land as a yoke of oxen would plough in a day.1Sa 14:14.

The above measures are calculated from the cubit being the same as the Hebrew ammah and the Greek , which latter is found in Mat 6:27; Luk 12:25; Joh 21:8; Rev 21:17. This may be called the short cubit (perhaps not the shortest: See CUBIT). In Eze 41:8 is the expression, ‘a full reed of six great cubits.’ The ‘great cubit ‘ is supposed to be a cubit and a handbreadth. This would make Ezekiel’s reed to be about 10.618 feet. By adding a sixth to any of the above measurements they will correspond to the great cubit. There can be no doubt, however, that the ‘furlong’ and the ‘mile’ were Greek measures.

Though all these reckonings are only approximate, they help to throw light upon many passages of scripture. Thus Isa 5:10 shows that there is a curse resting upon the fields of a covetous man. In Rev 6:6 the quantities prove that the time then spoken of will be one of great scarcity, etc.

Fuente: Concise Bible Dictionary

Weights And Measures

Weights And Measure.

A. Weights. — The general principle of the present inquiry is to give the evidence of the monuments the preference on all doubtful points. All ancient Greek systems of weight were derived, either directly or indirectly, from an eastern source. The older systems of ancient Greece and Persia were the Aeginetan, the Attic, the Babylonian and the Euboic.

1. The Aeginetan talent is stated to have contained 60 minae, 6000 drachme.

2. The Attic talent is the standard weight introduced by Solon.

3. The Babylonian talent may be determined from existing weights found by Mr. Layard at Nineveh. Pollux makes it equal to 7000 Attic drachms.

4. The Euboic talent, though bearing a Greek name, is rightly held to have been originally an eastern system. The proportion of the Euboic talent to the Babylonian talent was probably as 60 to 72. Taking the Babylonian maneh at 7992 grs., we obtain 399,600 for the Euboic talent. The principal if not the only Persian gold coin is the daric, weighing about 129 grs.

The Hebrew talent or talents and divisions. A talent of silver is mentioned in Exodus, which contained 3000 shekels, distinguished as “the holy shekel,” or “shekel of the sanctuary.” The gold talent contained 100 manehs, 10,000 shekels. The silver talent contained 3000 shekels, 6000 bekas, 60,000 gerahs. The significations of the names of the Hebrew weights must be here stated.

The chief unit was the Shekel (that is, weight), called also the holy shekel or shekel of the sanctuary; subdivided into the beka (that is, half) or half-shekel, and the gerah (that is, a grain or beka).

The chief multiple, or higher unit, was the kikkar (that is, circle or globe, probably for an aggregate sum), translated in our version, after the Septuagint (LXX) Talent; (that is, part, portion or number), a word used in Babylonian and in the Greek hena or mina.

(1) The relations of these weights, as usually: employed for the standard of weighing silver, and their absolute values, determined from the extant silver coins, and confirmed from other sources, were as follows, in grains exactly and in avoirdupois weight approximately:

(2) For gold, a different shekel was used, probably of foreign introduction. Its value has been calculated at from 129 to 132 grains. The former value assimilates it to the Persian daric of the Babylonian standard. The talent of this system was just double that of the silver standard; if was divided into 100 manehs, and each maneh into 100 shekels, as follows:

(3) There appears to have been a third standard for copper, namely, a shekel four times as heavy as the gold shekel (or 528 grains), 1500 of which made up the copper talent of 792,000 grains. It seems to have been subdivided, in the coinage, into halves (of 264 grains), quarters (of 132 grains) and sixths (of 88 grains).

B. Measures. —

I. Measures of Length. — In the Hebrew, as in every other system, these measures are of two classes: length, in the ordinary sense, for objects whose size we wish to determine, and distance, or itinerary measures, and the two are connected by some definite relation, more or less simple, between their units.

The measures of the former class (length) have been universally derived, in the first instance, from the parts of the human body; but it is remarkable that, in the Hebrew system, the only part used for this purpose is the hand and fore-arm, to the exclusion of the foot, which was the chief unit of the western nations.

Hence, arises the difficulty of determining the ratio of the foot to the Cubit, (The Hebrew word for the cubit (ammah) appears to have been of Egyptian origin, as some of the measures of capacity (the hin and ephah) certainly were). Which appears as the chief Oriental unit from the very building of Noah’s ark. Gen 6:15-16; Gen 7:20.

The Hebrew lesser measures were the finger’s breadth, Jer 52:21 only; the palm or handbreadth, Exo 25:25; 1Ki 7:26; 2Ch 4:5, used metaphorically in Psa 39:5, the span, that is, the full stretch between the tips of the thumb and the little finger, Exo 28:16; 1Sa 17:4; Eze 43:13, and figuratively. Isa 40:12.

The data for determining the actual length of the Mosaic cubit involve peculiar difficulties, and absolute certainty seems unattainable. The following, however, seem the most probable conclusions:

First, that three cubits were used in the times of the Hebrew monarchy, namely :

(1) The cubit of a man, Deu 3:11 or the common cubit of Canaan (in contradistinction to the Mosaic cubit) of the Chaldean standard;

(2) The old Mosaic or legal cubit, a handbreadth larger than the first, and agreeing with the smaller Egyptian cubit;

(3) The new cubit, which was still larger, and agreed with the larger Egyptian cubit, of about 20.8 inches, used in the Nilometer.

Second, that the ordinary cubit of the Bible did not come up to the full length of the cubit of other countries. The reed (kaneh), for measuring buildings (like the Roman decempeda), was to 6 cubits. It occurs only in Ezekiel Eze 40:5-8; Eze 41:8; Eze 42:16-29 The values given in the following table are to be accepted with reservation, for want of greater certainty:

Of measures of distance, the smallest is the pace, and the largest is the day’s journey.

(a) The pace, 2Sa 6:13, whether it be a single, like our pace, or double, like the Latin passus, is defined by nature within certain limits, its usual length being about 30 inches for the former and 5 feet for the latter. There is some reason to suppose that even before the Roman measurement of the roads of Palestine, the Jews had a mile of 1000 paces, alluded to in Mat 5:41. It is said to have been single or double, according to the length of the pace; and hence the peculiar force of our Lord’s saying: “Whosoever shall compel thee [as a courier] to go a mile, go with him twain” — put the most liberal construction on the demand.

(b) The day’s journey was the most usual method of calculating distances in travelling, Gen 30:36; Gen 31:23; Exo 3:18; Exo 5:3; Num 10:33; Num 11:31; Num 33:8; Deu 1:2; 1Ki 19:4; 2Ki 3:9; Jon 3:3 1Ma 5:24; 1Ma 7:45; Tob 6:1, though but one instance of it occurs in the New Testament Luk 2:44.

The ordinary day’s journey among the Jews was 30 miles; but when they travelled in companies, only ten miles. Neapolis formed the first stage out of Jerusalem according to the former and Beeroth according to the latter computation,

(c) The Sabbath Day’s journey of 2000 cubits, Act 1:12, is peculiar to the New Testament, and arose from a rabbinical restriction. It was founded on a universal, application of the prohibition given by Moses for a special occasion: “Let no man go out of his place on the seventh day.” Exo 16:29.

An exception was allowed for the purpose of worshipping at the Tabernacle; and, as 2000 cubits was the prescribed space to be kept between the Ark and the people as well as the extent of the suburbs of the Levitical cities on every side, Num 35:5, this was taken for the length of a Sabbath Day’s journey measured front the wall of the city in which the traveller lived. Computed from the value given above for the cubit, the Sabbath Day’s journey would be just six tenths of a mile.

(d) After the captivity, the relations of the Jews to the Persians, Greeks and Romans caused the use, probably, of the parasang, and certainly of the stadium and the mile. Though the first is not mentioned in the Bible, if is well to exhibit the ratios of the three.

The universal Greek standard, the stadium of 600 Greek feet, which was the length of the race-course at Olympia, occurs first in the Maccabees, and is common in the New Testament. Our version renders it furlong; it being, in fact, the eighth part of the Roman mile, as the furlong is of ours. 2Ma 11:5; 2Ma 12:9; 2Ma 12:17; 2Ma 12:29; Luk 24:13; Joh 6:19; Joh 11:18; Rev 14:20; Rev 21:18.

One measure remains to be mentioned. The fathom, used in sounding by the Alexandrian mariners in a voyage, is the Greek orguia, that is, the full stretch of the two arms from tip to tip of the middle finger, which is about equal to the height, and in a man of full stature is six feet. For estimating area, and especially land, there is no evidence that the Jews used any special system of square measures, but they were content to express by the cubit, the length and breadth of the surface to be measured, Num 35:4,5; Eze 40:27, or by the reed. Eze 41:8; Eze 42:16-19; Rev 21:16.

II. Measures of Capacity. — The measures of capacity for liquids were:

(a) The log, Lev 14:10. Etc. The name originally signifying basin.

(b) The hin, a name of Egyptian origin, frequently noticed in the Bible. Exo 29:40; Exo 30:24; Num 15:4; Num 15:7-8; Eze 4:11; etc.

(c) The bath, the name meaning “measured”, the largest of the liquid measures. 1Ki 7:26; 1Ki 7:38; 2Ch 2:10; Ezr 7:22; Isa 5:10.

The dry measure contained the following denominations:

(a) The cab, mentioned only in 2Ki 6:25, the name meaning literally hollow or concave.

(b) The omer, mentioned only in Exo 16:16-36. The word implies a heap, and secondarily, a sheaf.

(c) The seah, or “measure”, this being the etymological meaning of the term and appropriately applied to it, inasmuch as, it was the ordinary measure for household purposes. Gen 18:6; 1Sa 25:18; 2Ki 7:1; 2Ki 7:16. The Greek equivalent occurs in Mat 13:33; Luk 13:21.

(d) The ephah, a word of Egyptian origin and frequent recurrence in the Bible. Exo 16:36; Lev 5:11; Lev 6:20; Num 5:15; Num 28:5; Jdg 6:19; Rth 2:17; 1Sa 1:24; 1Sa 17:17; Eze 45:11; Eze 45:13; Eze 46:5; Eze 46:7; Eze 46:11; Eze 46:14.

(e) The lethec, or “half homer” literally meaning what is poured out; it occurs only in Hos 3:2.

(f) The homer, meaning heap. Lev 27:16; Num 11:32; Isa 5:10; Eze 45:13. It is elsewhere termed cor, from the circular vessel in which it was measured. 1Ki 4:22; 1Ki 5:11; 2Ch 2:10; 2Ch 27:5; Ezr 7:22; Eze 45:14. The Greek equivalent occurs in Luk 16:7 The absolute values of the liquid and the dry measures are stated differently by Josephus and the rabbinists, and as we are unable to decide between them, we give a double estimate to the various denominations.

In the new Testament, we have notices of the following foreign measures:

(a) The metretes, Joh 2:6, Authorized Version, “firkin”, for liquids.

(b) The choenix, Rev 6:6, Authorized Version, “measure”, for dry goods.

(c) The xestec, applied, however, not to the peculiar measure so named by the Greeks, but to any small vessel, such as a cup. Mar 7:4; Mar 7:8, Authorized Version, “pot”.

(d) The modius, similarly applied to describe any vessel of moderate dimensions, Mat 5:15; Mar 4:21; Luk 11:33, Authorized Version, “bushel”, though properly meaning a Roman measure, amounting to about a peck.

The value of the Attic metretes was 8.6696 gallons, and consequently the amount of liquid in six stone jars, containing on the average 2 1/2 metretae each, would exceed 110 gallons. Joh 2:6 Very possibly, however, the Greek term represents the Hebrew bath; and if the bath be taken at the lowest estimate assigned to it, the amount would be reduced to about 60 gallons. The choenix was 1-48th of an Attic medimnus, and contained nearly a quart. It represented the amount of corn for a day’s food; and, hence, a choenix for a penny (or denarius), which usually purchased a bushel (Cic. Verr. iii 81), indicated a great scarcity. Rev 6:6.

Fuente: Smith’s Bible Dictionary